Publicado por en en General
  • Tamaño de fuente: Mayor Menor
  • Visitas: 1261
  • 0 Comentarios
  • Imprimir

Las neuronas del cuerpo humano

Las neuronas (del griego cuerda, nervio) son un tipo de células del sistema nervioso cuya principal característica es la excitabilidad de su membrana plasmática; están especializadas en la recepción de estímulos y conducción del impulso nervioso (en forma de potencial de acción) entre ellas o con otros tipos celulares, como por ejemplo las fibras musculares de la placa motora. Altamente diferenciadas, la mayoría de las neuronas no se dividen una vez alcanzada su madurez; no obstante, una minoría sí lo hace. Las neuronas presentan unas características morfológicas típicas que sustentan sus funciones: un cuerpo celular o «pericarion», central; una o varias prolongaciones cortas que generalmente transmiten impulsos hacia el soma celular, denominadas dendritas; y una prolongación larga, denominada axón o «cilindroeje», que conduce los impulsos desde el soma hacia otra neurona u órgano diana.

 

La neurogénesis en seres adultos, fue descubierta apenas en el último tercio del siglo XX. Hasta hace pocas décadas se creía que, a diferencia de la mayoría de las otras células del organismo, las neuronas normales en el individuo maduro no se regeneraban, excepto las células olfatorias. Los nervios mielinados del sistema nervioso periférico también tienen la posibilidad de regenerarse a través de la utilización del neurolema, una capa formada de los núcleos de las células de Schwann. 

La neurocidad,en su caso, es el proceso de modificación de la organización neuronal del cerebro a resultas de la experiencia. El concepto se sustenta en la capacidad de modificación de la actividad de las neuronas, y como tal fue descrita por el neurocientífico polaco Jerzy Konorski. La capacidad de modificar el número de sinapsis, de conexiones neurona-neurona o incluso del número de células, da lugar a la neuroplasticidad. Históricamente, la neurociencia concebía durante el siglo XX un esquema estático de las estructuras más antiguas del cerebro así como de la neocorteza. No obstante, hoy día se sabe que las conexiones cerebrales varían a lo largo de la vida del adulto, así como es también posible la generación de nuevas neuronas en áreas relacionadas con la gestión de la memoria (hipocampo, giro dentado). Este dinamismo en algunas áreas del cerebro del adulto responde a estímulos externos, e incluso alcanza a otras partes del encéfalo como el cerebelo. 

De acuerdo a los conocimientos científicos de la neuroplasticidad, los procesos mentales (el hecho de pensar, de aprender) son capaces de alterar la pauta de activación cerebral en las áreas neocorticales. Así, el cerebro no es una estructura inmutable, sino que responde a la experiencia vital del individuo. Este cambio en el paradigma de la Neurociencia ha sido definido por el psiquiatra canadiense Norman Doidge como «uno de los descubrimientos más extraordinarios del siglo XX» (fitness mental o Neuro Gym, Entrenamiento cognitivo o Neuroplasticidad): a través de la actividad del pensamiento*. 

Existe la tendencia a comparar al cerebro con los conductos electrónicos del hombre. No se debe hacer, pues se suele caer en demagogia e incluso, falacias argumentales. No existe base científica que logre demostrar sin margen de error que los datos de las comparaciones sean fiables al 100%, por lo que esos estudios son estimaciones por comparación entre conceptos equivalentes. Si bien las equivalencias pueden llegar a satisfacer los requerimientos de ciertos científicos, ellos mismos reconocen sus límites a la hora de entender el funcionamiento exacto del cerebro. 

En un pasado, la euforia de los ingenieros por los logros tecnológicos, les llevaron a comparar los procesos cerebrales con los electrónicos, estableciendo equivalencias. No obstante, los intereses económicos de empresas se valen de esos estudios para sus fines comerciales. Así, estos estudios siempre salen de la mano de algún ente privado, sin una concordancia con alguna universidad de prestigio que avale esos resultados. Tenemos el caso de la típica comparación que existe entre las memorias de ordenadores, así como de otros métodos de retener información, y la capacidad rememorativa del cerebro humano. La compañía Laboratorios de Tecnología Avanzada de la Corporación RCA ofrece estas comparaciones, según se publicaron en la revista “Business Week”: Por eso, con toda la tecnología humana existente, el cerebro humano todavía tiene una capacidad 10 veces mayor que lo que está almacenado en los Archivos Nacionales de Estados Unidos, 500 veces mayor que un sistema de memoria de un ordenador avanzado y 10.000 veces mayor que lo que está registrado en la “Encyclopedia Britannica”. 

A diferencia de los ordenadores (lo que está en blanco permanece en blanco) el cerebro no pierde el tiempo ni desaprovecha las supuestas regiones 'no usadas'. Dada su gran capacidad de optimizar la energía, las neuronas siempre interaccionan para evitar un costo mayor, por lo que las regiones 'no usadas' pasan a convertirse en regiones poco optimizadas. Una neurona sin usar es más costosa de mantener que cuando esta se conecta a un entramado sináptico. Por ello, cuando una neurona queda aislada del resto, su tendencia es a morir, y no a quedar en blanco; aunque puede regenerarse. 

De esto se desprenden los comportamientos curiosos de las personas cuando han de incorporar nuevos enlaces a sus esquemas sinápticos. Por ejemplo, tratar de hacer entender a una abuelita el funcionamiento de un cajero automático puede ser desesperante, sus facultades mentales pueden estar acostumbradas a tratar con personas, su optimización sináptica está adaptada a personas, no con máquinas; cambiar toda la inercia cerebral de un anciano que ha basado su experiencia bancaria a la comunicación humana, es muy costoso, la tendencia siempre será a ir a lo conocido. Ahora pongamos a un niño de 5 años frente a una máquina, suponiendo que en su corta vida solo haya jugado con juguetes tradicionales, el niño pronto aprenderá a entenderse con el constructo electrónico. 

En el funcionamiento de un ordenador no se permite la modificación de los entramados electrónicos, por ser Hardware. La gran ventaja del cerebro frente a un ordenador, no es la capacidad de almacenamiento ni de proceso de información, sino la de adaptación y constante búsqueda de la optimización de la energía por la modificación de su propio 'Hardware'. 

En el campo de la inteligencia artificial existe una paradoja denominada paradoja de Moravec. Esta dicta que, de forma antiintuitiva, el pensamiento razonado humano requiere de poca computación, mientras que las habilidades sensoriales y motoras, no conscientes y compartidas con otros muchos animales, requieren de grandes esfuerzos computacionales. Este principio fue postulado por Hans Moravec y otros en la década de los 80. Como Moravec dijo: «es fácil comparativamente conseguir que las computadoras muestren capacidades similares a las de un humano adulto en tests de inteligencia, y difícil o imposible lograr que posean las habilidades perceptivas y motrices de un bebé de un año». Ahora sabemos que la Inteligencia Emocional está muy por encima del Cociente Intelectual

Una red neuronal se define como una población de neuronas físicamente interconectadas o un grupo de neuronas aisladas que reciben señales que procesan a la manera de un circuito reconocible. La comunicación entre neuronas, que implica un proceso electroquímico, implica que, una vez que una neurona es excitada a partir de cierto umbral, ésta se despolariza transmitiendo a través de su axón una señal que excita a neuronas aledañas, y así sucesivamente. El sustento de las capacidad del sistema nervioso, por tanto, radica en dichas conexiones. En oposición a la red neuronal, se habla de circuito neuronal cuando se hace mención a neuronas que se controlan dando lugar a una retroalimentación («feedback»), como define la cibernética. 

El conocimiento de las redes neuronales biológicas ha dado lugar a un diseño empleado en inteligencia artificial. Estas redes funcionan porque cada neurona recibe una serie de entradas a través de interconexiones y emite una salida. Esta salida viene dada por tres funciones: una función de propagación que por lo general consiste en el sumatorio de cada entrada multiplicada por el peso de su interconexión; una función de activación, que modifica a la anterior y que puede no existir, siendo en este caso la salida la misma función de propagación; y una función de transferencia, que se aplica al valor devuelto por la función de activación. Se utiliza para acotar la salida de la neurona y generalmente viene dada por la interpretación que queramos darle a dichas salidas. 

Las neuronas tienen la capacidad de comunicarse con precisión, rapidez y a larga distancia con otras células, ya sean nerviosas, musculares o glandulares. A través de las neuronas se transmiten señales eléctricas denominadas impulsos nerviosos. 

Estos impulsos nerviosos viajan por toda la neurona comenzando por las dendritas, y pasa por toda la neurona hasta llegar a los botones terminales, que pueden conectar con otra neurona, fibras musculares o glándulas. La conexión entre una neurona y otra se denomina sinapsis. 

Las neuronas conforman e interconectan los tres componentes del sistema nervioso: sensitivo, integrador o mixto y motor. De esta forma, un estímulo que es captado en alguna región sensorial entrega cierta información que es conducida a través de las neuronas y es analizada por el componente integrador, el cual puede elaborar una respuesta, cuya señal es conducida a través de las neuronas. Dicha respuesta es ejecutada mediante una acción motora, como la contracción muscular o secreción glandular.

Las neuronas transmiten ondas de naturaleza eléctrica originadas como consecuencia de un cambio transitorio de la permeabilidad en la membrana plasmática. Su propagación se debe a la existencia de una diferencia de potencial o potencial de membrana (que surge gracias a las concentraciones distintas de iones a ambos lados de la membrana, según describe el potencial de Nernst) entre la parte interna y externa de la célula (por lo general de -70 mV). La carga de una célula inactiva se mantiene en valores negativos (el interior respecto al exterior) y varía dentro de unos estrechos márgenes. Cuando el potencial de membrana de una célula excitable se despolariza más allá de un cierto umbral ( de 65mV a 55mV app) la célula genera (o dispara) un potencial de acción. Un potencial de acción es un cambio muy rápido en la polaridad de la membrana de negativo a positivo y vuelta a negativo, en un ciclo que dura unos milisegundos. 

Un sistema nervioso procesa la información siguiendo un circuito más o menos estándar. La señal se inicia cuando una neurona sensorial recoge información. Su axón se denomina fibra aferente. Esta neurona sensorial transmite la información a otra aledaña, de modo que acceda un centro de integración del sistema nervioso del animal. Las interneuronas, situadas en dicho sistema, transportan la información a través de sinapsis. Finalmente, si debe existir respuesta, se excitan neuronas eferentes que controlan músculos, glándulas u otras estructuras anatómicas. Las neuronas aferentes y eferentes, junto con las interneuronas, constituyen el circuito neuronal. 

La doctrina de la neurona, establecida por Santiago Ramón y Cajal a finales del siglo XIX, es el modelo aceptado hoy en neurofisiología. Consiste en aceptar que la base de la función neurológica radica en las neuronas como entidades discretas, cuya interacción, mediada por sinapsis, conduce a la aparición de respuestas complejas. Cajal no solo postuló este principio, sino que lo extendió hacia una «ley de la polarización dinámica», que propugna la transmisión unidireccional de información (esto es, en un sólo sentido, de las dendritas hacia los axones). No obstane, esta ley no siempre se cumple. Por ejemplo, las células gliales pueden intervenir en el procesamiento de información, e, incluso, las efapsis o sinapsis eléctricas, mucho más abundantes de lo que se creía, presentan una transmisión de información directa de citoplasma a citoplasma. Más aún: las dendritas pueden dirigir una señal sináptica de forma centrífuga al soma neuronal, lo que representa una transmisión en el sentido opuesto al postulado, de modo que sean los axones los que reciban de información (aferencia). Nada más hay que ver en una pantalla cómo en cuestión de segundos la información sináptica llena todo el espacio en cuestión de segundos a modo de relámpagos que no siguen una misma trayectoria.

Un saludo.

Marintaler

__

* Norman Doidge: "El cerebro se cambia a sí mismo. Historias de triunfo personal en las fronteras de la neurociencia". Norman Doidge es psiquiatra, psicoanalista e investigador en el Center for Psycoanalytic Training and Research de la Universidad de Columbia en Nueva York y en el Departamento de Psiquiatría de la Universidad de Toronto, así como escritor, ensayista y poeta. Ha recibido en cuatro ocasiones el Canada’s National Magazine Gold Award. En el área hispana la influencia de la Neurociencia se decanta hacia Luis Gaviria,  un Psicofisiologista clínico (medicina del estrés) que fue director del Instituto de Investigación BioComp en Los Ángeles, California; así como jefe del Hospital de cuidados intensivos de Las Américas, profesor de la Facultad de Medicina de la Universidad de Antioquia, Colombia, y actualmente es presidente de Gaventerprise Group, una firma líder de consultoría en Neurocoaching de Estados Unidos y América Latina. El mentor de Luis Gaviria fue el Doctor Hershel Toomin, pionero de BioFeedBack y principal impulsor de la Hemoencefalografía, un disciplina de Neurofeedback. El Doctor Luis Gaviria ha trabajado con miles de personas en todo el mundo en los ámbitos de la gestión del estrés y de desarrollo personal. Una completa serie de televisión de WLRN-TV, denominado "Universo interior" fue dedicado a él y su trabajo en el sur de Florida. Es autor de "Uso del estrés para el éxito", publicado por Amazon. También es coautor de "Factores de riesgo cardiovascular: mitos y leyendas". Y ha publicado una serie de audiolibros en español como "El valor del Strokes" y "Neurocoaching y Significado", entre otros. Además, ha impartido una serie de cursos y conferencias a nivel mundial dirigidos a empoderar al individuo mediante el uso adecuado de Entrenamiento y Andragogía (estrategias de aprendizaje centradas en los adultos).

 

0
URL de las referencias para esta entrada
Coaching Empresarial | Programación Neurolingüística | Inteligencia Emocional | Liderazgo
Entradas Recientes de este Autor

Comentarios

  • No hay comentarios por el momento. Se el primero en enviar un comentario.

Deja tu comentario

Invitado Domingo, 12 Julio 2020

Acceso

Accede con Facebook

Están Online:

317613
INVITADOS
1
MIEMBROS